TABLE OF CONTENTS

FOREWORD .. v
ACKNOWLEDGEMENTS vii
LIST OF ABBREVIATIONS ix

1. OPENING LECTURE: MAJOR TASKS OF GATE 1
 by M.A. Petrouslants
 1.1 An Earlier History of GATE 1
 1.2 Identification of GATE 4
 1.3 Main Scientific Objectives of GATE 9
 1.4 The GATE Sub-Programmes and their Tasks within the Central Programme 10

2. GATE OBSERVATIONAL STRATEGY: A LOOK IN RETROSPECT 15
 by J.P. Kuehler
 2.1 Introduction 15
 2.2 Observational Strategy in the Planning Phase 15
 2.3 Strategy during Field Operations 23
 2.4 Strategy in Retrospect 24
 2.5 Some Lessons Learned 26

3. LARGE-SCALE MEAN STATE 27
 by T.N. Krishnamurti and R.J. Pasch
 3.1 Introduction 27
 3.2 Mean Surface Winds 27
 3.3 The Mean State at 850 mb 32
 3.4 The Mean State in the Upper Troposphere 36
 3.5 Mean Sea-Surface Temperature 38
 3.6 The Mean Cloud Cover 39
 3.7 The Mean Rainfall Rates 42
 3.8 Phase Mean Temperature, Humidity, Pressure and Geopotential Fields 48
 3.9 Time Averages of the Wind Stress and the Curl of the Wind Stress 48
 3.10 The Surface Heat Balance of the GATE Oceans 51
 3.11 Mean Sounding on the GATE A-Scale 54
 3.12 Concluding Remarks 54

4. SYNOPSIS-SCALE MOTIONS 61
 by R.W. Burpee and R.J. Reed
 4.1 Introduction 61
 4.2 African or Easterly Waves 61
 4.3 Other Topics 104
 4.4 Summary and Conclusions 110

5. THEORETICAL STUDIES OF TROPICAL WAVES 121
 by E.M. Dobryshev
 5.1 Introduction 121
 5.2 The Scale of Motions and Determination of the Equatorial Belt Width 122
 5.3 Large-Scale Disturbances, Rossby Waves, Kelvin Waves, Mixed Rossby-Gravity Waves 123
 5.4 Small-Scale Waves in the Narrow Equatorial Belt 130
 5.5 Non-Linear Effects 139
 5.6 Sources of Large-Scale Wave Disturbances in the Tropics 148

6. LARGE-SCALE NUMERICAL MODELLING 183
 by A. Gilchrist, R.R. Rowntree and D.B. Shaw
 6.1 Introduction 183
 6.2 The Impact of GATE on Objective Analysis Techniques 184
 6.3 Vertical Interpolation and Initialization 192
 6.4 Tropical Predictions using GATE Data 192
 6.5 Sensitivity of Tropical Predictions to Initial Surface Data 200
 6.6 Sensitivity to Initial Atmospheric Data 201
 6.7 Sensitivity to Model Formulations 206
 6.8 Summary and Conclusions 213

7. PHYSICS OF THE UPPER TROPICAL OCEAN 219
 by G. Siegler and G. Philander
 7.1 Introduction 219
 7.2 The Mean Oceanographic Conditions 220
 7.3 Mixing Processes 222
 7.4 Heat Budget of the Surface Layer 225
 7.5 Inertia-Gravity Waves 225
 7.6 Variability near the Equator 228
 7.7 Seasonal Variability 231
 7.8 Conclusions 232

8. A/B AND B-Scale MOTION AND BALANCES IN THE ITCZ AREA 237
 8.1 Introduction 237
 8.2 Classification of Observations in ITCZ 237
 8.3 ITCZ, Its Location and Main Features from Observation Data for the B and A/B Arrays 238
 8.4 Easterly Waves and Disturbances in the ITCZ 246
 8.5 The ITCZ Atmospheric Dynamics 246
 8.6 Heat Balance and Sea-Surface Temperature 252
 8.7 Energy Balance of the Air Column in ITCZ 256
 8.8 Computation of Precipitation and the Role of ITCZ in Energy Conversions in the Atmosphere 261
 8.9 Interaction of Different-Scale Motions in the Tropics 268
 8.10 Summary 269

9. CLOUDS, CONVECTION AND CONVECTIVE MODELS 275
 by R.A. Houtou, Jr., and A.K. Betts
 9.1 The Understanding of Tropical Convection Circa 1973 275
 9.2 The Aims of GATE in Improving the Understanding of Tropical Convection 276
 9.3 Methods of Observing the Convection in GATE 276
 9.4 Statistical Surveys of GATE Convection 279
 9.5 Case Studies of GATE Convection 292
 9.6 Interaction Between Convection and the Large-Scale Flow: Diagnostic Model Results 314
 9.7 Parameterization Tests and Convective Modeling 324
 9.8 Conclusions 331
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.</td>
<td>BOUNDARY LAYER PHENOMENA: ..</td>
<td>345</td>
</tr>
<tr>
<td></td>
<td>- THE SURFACE LAYER (AIR-SEA INTERACTION AND ITS PARAMETERIZATION)</td>
<td>345</td>
</tr>
<tr>
<td></td>
<td>by Yu.A.Volkov</td>
<td>345</td>
</tr>
<tr>
<td></td>
<td>- THE STRUCTION OF THE ATMOSPHERIC BOUNDARY LAYER UNDER DIFFERENT CONVECTION CONDITIONS</td>
<td>359</td>
</tr>
<tr>
<td></td>
<td>by E.Augstein and H.Hinzepeeter</td>
<td>359</td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction ...</td>
<td>345</td>
</tr>
<tr>
<td>10.2</td>
<td>The Surface Layer (Air-Sea Interaction and its parameterization)</td>
<td>346</td>
</tr>
<tr>
<td>10.3</td>
<td>The Structure of the Atmospheric Boundary Layer under Different Convective Conditions</td>
<td>380</td>
</tr>
<tr>
<td>10.4</td>
<td>Conclusions ...</td>
<td>380</td>
</tr>
<tr>
<td>11.</td>
<td>RADIATION PROCESSES AND THEIR PARAMETERIZATION</td>
<td>389</td>
</tr>
<tr>
<td>11.1</td>
<td>Introduction ...</td>
<td>389</td>
</tr>
<tr>
<td>11.2</td>
<td>Radiation Balance at the Sea Surface</td>
<td>390</td>
</tr>
<tr>
<td>11.3</td>
<td>Heat Radiation Field According to Radiometer-sounding Data</td>
<td>399</td>
</tr>
<tr>
<td>11.4</td>
<td>Computation of the Radiation Budget of the Tropical Atmosphere</td>
<td>400</td>
</tr>
<tr>
<td>11.5</td>
<td>Radiation in the Equatorial Belt</td>
<td>410</td>
</tr>
<tr>
<td>11.6</td>
<td>The "Window" 8-12 µm ...</td>
<td>418</td>
</tr>
<tr>
<td>11.7</td>
<td>Emissivity of CI Clouds ...</td>
<td>424</td>
</tr>
<tr>
<td>11.8</td>
<td>Radiative Effects of Saharan Aerosol</td>
<td>429</td>
</tr>
<tr>
<td>11.9</td>
<td>Radiation Role in Tropical Convection</td>
<td>429</td>
</tr>
<tr>
<td>11.10</td>
<td>Radiative Effect in GATE-Based Atmospheric Circulation Models</td>
<td>449</td>
</tr>
<tr>
<td>12.</td>
<td>MAIN ACHIEVEMENTS OF GATE AND ITS IMPACT ON FGGE</td>
<td>467</td>
</tr>
<tr>
<td></td>
<td>by M.A.Petrossian</td>
<td>467</td>
</tr>
<tr>
<td>12.1</td>
<td>Introduction ...</td>
<td>467</td>
</tr>
<tr>
<td>12.2</td>
<td>Main Research Results ...</td>
<td>470</td>
</tr>
<tr>
<td>12.3</td>
<td>Technological Development and its Impact on FGGE</td>
<td>476</td>
</tr>
<tr>
<td>12.4</td>
<td>Use of GATE Experience for Implementation and Management of FGGE</td>
<td>476</td>
</tr>
</tbody>
</table>
Convection in GATE---recognition and importance of the **cloud cluster**

Houze 1977

GATE B-scale array
100-1000 km

Radar network used to develop statistics on echo sizes, convective organization and precipitation processes (convective and stratiform)

3-hourly sounding from the Ships in this array
Cloud clusters (MCSs) are major pathways for the transport of mass and heat in the troposphere. They are also major contributors to rainfall and energetics over the mid- and low-latitudes.

A view looking aft from the R/V Researcher in GATE 1974 (photo by Bob Houze)
The distribution of echo sizes from the GATE radars

Population dominated by isolated, small cells

Large cloud clusters are relatively rare but these large systems produce dominant fraction of ITCZ rainfall

The largest of the cloud clusters contain multiple Mesoscale Precipitation Features so cloud clusters span the mesoscale to synoptic scale

GATE showed that cloud clusters modulated by Easterly Waves with 3-5 day periodicity

Cloud clusters: include squall and non-squall types

Fig. 7. Frequency of occurrence of D, C, and B/C scale radar echoes during GATE. From Houze and Cheng [1977].
GATE provided first comprehensive measurement of convective cell widths and updraft/downdraft intensities—based on aircraft penetrations

Two key papers, LeMone and Zipser; Zisper and LeMone (both in 1980)

Drafts: > .5 m/s for 1 second

Cores: > 1 m/s for at least 500 m width.

Updrafts are weak!

Core diameters are small.

Downdrafts are somewhat weaker than updrafts.

Large rainout from warm phase processes.

Rapid falloff in radar reflectivity with height.
Summarize draft stats from these 2 papers

Above cloud base, updrafts tend to be smaller but more intense than downdrafts. Updrafts and downdrafts near cloud base are comparable in size and intensity. Downdraft cores are smaller than updraft cores at all altitudes. They also are weaker, except near cloud base, where updraft and downdraft cores have comparable intensity. In the middle troposphere, only 10% of the updraft cores have mean vertical velocities greater than 5 m s⁻¹, and only 10% have diameters in excess of 2 km.

Why are the convective updrafts so weak? Discussion topic....
Why are updrafts weak over the oceans?

CAPE; integrated thermal buoyancy
Warm cloud depth
Freezing level height - Cloud base height

Tropical oceanic convection; moderate to high CAPE (narrow thermal buoyancy), low CBH (deep WCD) and low CCN concentrations. Narrow drafts subject to considerable entrainment.

Parcel temperature is far from the environmental temperature profile

Tropical continental convection; moderate to high CAPE (wide thermal buoyancy), high CBH (shallow WCD) and high CCN concentrations. Broad updrafts less subject to entrainment.
• Classic paper by Houze (1977) from GATE. **First shipbased radar (non-Doppler) observations of tropical convection.** Merged ship radar, sounding data, satellite and surface data to reveal dynamical and thermodynamical structure.

• Zipser (1969) previously identified several key features of these systems from the Line Is. experiment. Zipser (1977) from GATE was a parallel study to Houze (1977).

• **Convective region characterized by new convective cells developing ahead of mature cells.** A mesoscale downdraft prevailed in the mid and lower troposphere below the trailing anvil cloud.

• The trailing anvil cloud was stratiform and contributed 40% of the total precipitation. **The possibility of a mesoscale updraft was mentioned, as well as its role in producing anvil precipitation.** The anvil was fed by incorporation of dissipating convective elements from the squall line............but did it have an internal mechanism for producing precipitation?
60/40 split between convective and stratiform rain from GATE 5 September cloud cluster

Radar derived via GATE Z-R relationship $Z = 230 R^{1.5}$

Z in mm6 m$^{-3}$ and R in mm h$^{-1}$; no convective/stratiform partitioning done

For convective-stratiform partitioning,

Gan Is./Manus Is.
Thompson et al. (2015, JAS)

$Z = 126 R^{1.46}$ Convective
$Z = 230 R^{1.55}$ Stratiform

$10 \log R = 10 \log Z - 10 \log A$

85/15 Convective/stratiform
The well known Zipser 1977 conceptual model for a GATE MCS

A tell tale sign of mesoscale subsidence is the marked divergence beneath stratiform anvil cloud
Aircraft and radiosonde derived in and near the stratiform precipitation region on 5 September 1974

The famous “onion-skin” sounding

Subsidence warming and drying driven by a mesoscale unsaturated downdraft---sort of a derivative of convective scale saturated updrafts

Zipser (1977)
A Diagnostic Modeling Study of the Trailing Stratiform Region of a Midlatitude Squall Line

STEVEN A. RUTLEDGE
Department of Atmospheric Sciences, Oregon State University, Corvallis, OR 97331

ROBERT A. HOUZE, JR.
Department of Atmospheric Sciences, University of Washington, Seattle, WA 98195

(Manuscript received 30 July 1986, in final form 13 April 1987)

ABSTRACT

A kinematic model with continuity equations for sensible heat, water vapor, cloud water, cloud ice, rain, snow, and graupel is used to determine the steady-state thermodynamic and microphysical processes associated with the observed mesoscale air motion fields in the trailing stratiform region of the 22 May 1976 Oklahoma squall line. Two versions of the observed air motions are used: a low-resolution but areally extensive flow pattern derived from the composite sounding data of Ogura and Liou, and a high-resolution but less areally extensive flow field obtained from the dual-Doppler radar analysis of Smull and Houze.

Model calculations based on the high-resolution Doppler-derived mesoscale air motions show that the location and horizontal scale of the region of most intense stratiform precipitation are determined by the pattern of horizontal transport and fallout of snow and low-density graupel particles advected into the stratiform region from the leading line of convective cells. The stratiform-region water budget implied by these calculations further indicates that the amount of stratiform rain reaching the surface is considerably enhanced by the passage of these particles through the region of mesoscale upward motion in the stratiform cloud behind the convective line. Vapor deposition onto existing ice particles and the collection of snow generated by the mesoscale ascent are the dominant growth processes in the stratiform region. Simulations using the low-resolution sounding-derived air motions as input to the model show that the mesoscale updraft accounts for the extensive nonraining stratiform cloud to the rear of the surface precipitation area.

\[R_m = C_{mu} - E_{md} - T + C_A, \]

\(R_m \) is rain from trailing mesoscale region

\(C_{mu} \), condensation in mesoscale region

\(E_{md} \), evaporation in mesoscale downdraft

\(T \), advection of condensate off the grid

\(C_A \), condensate influx from convective region

Hydrometeors input from convective region prescribed using aircraft data from Heymsfield and Hjemfelt (1984)

TABLE I. Values of the water budget components. Results of model simulations are denoted by HHSN, NCSN, HHSNNU and HHSNUN, as explained in the text. The values in the GH categories are from Gamache and Houze (1983) and are based on observations of an oceanic tropical squall line. The data from Chong (1983) are based on observations of a continental tropical squall line. All terms have units of kg m\(^{-1}\) s\(^{-1}\), where the unit length is the unit distance perpendicular to the model x-z domain.

<table>
<thead>
<tr>
<th>Case</th>
<th>(R_m)</th>
<th>(C_{mu})</th>
<th>(-E_{md})</th>
<th>(-T)</th>
<th>(+C_A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HHSN</td>
<td>43</td>
<td>87</td>
<td>-48</td>
<td>-40</td>
<td>44</td>
</tr>
<tr>
<td>NCSN</td>
<td>2</td>
<td>81</td>
<td>-23</td>
<td>-56</td>
<td>0</td>
</tr>
<tr>
<td>HHSNNU</td>
<td>11</td>
<td>5</td>
<td>-37</td>
<td>-1</td>
<td>44</td>
</tr>
<tr>
<td>HHSNUN</td>
<td>0</td>
<td>47</td>
<td>-55</td>
<td>-37</td>
<td>44</td>
</tr>
<tr>
<td>GH Case I</td>
<td>51</td>
<td>37</td>
<td>-17</td>
<td>-13</td>
<td>44</td>
</tr>
<tr>
<td>GH Case II</td>
<td>42</td>
<td>22</td>
<td>-14</td>
<td>-10</td>
<td>44</td>
</tr>
<tr>
<td>Chong (1983)</td>
<td>19</td>
<td>50</td>
<td>-52</td>
<td>-23</td>
<td>44</td>
</tr>
</tbody>
</table>
GATE science established that there are convective (up and down) drafts and mesoscale (up and down) drafts in tropical cloud clusters. Both scales are critical for transporting heat and momentum. So cumulus parameterizations now had to account for the mesoscale processes which prior to GATE the science community had only crude knowledge of.