
1. Introduction
Understanding microphysical processes in warm, mixed, and cold clouds, and how these processes impact both 
surface precipitation and storm dynamics, is critical to validating model parameterizations in cloud resolving 
models (CRMs), and ultimately in global climate models. However, microphysical processes (accretion, melting, 
etc.) are not directly observed, and must be inferred from measured quantities (e.g., reflectivity, updraft speed) 
(Kumjian & Ryzhkov,  2008). Relating observations to the dominant microphysical processes contributing to 
surface precipitation not only provides a way to study the variability of such processes, but also a means for vali-
dating microphysical schemes implemented in models. While bringing observations and models together toward 
these mutual goals is critical, it remains onerous due to differences in spatial scales, temporal scales, and sample 
sizes, as well as contrasts in observed quantities (e.g., reflectivity, size distributions) and those routinely output 
by models (e.g., mixing ratios, 3D wind fields).

Model validation is most often undertaken as a comparison between model output and observations, regard-
ing comparing radar reflectivity, total precipitation, vertical winds, and other quantities, most typically on a 
case-by-case basis (e.g., Iguchi et al., 2012; Li et al., 2009; Marinescu et al., 2020, 2016; Varble et al., 2014). 
However, these types of comparisons often do not contain information about the accuracy of various model 
parameterizations and do not lend themselves to validation of idealized simulations without coincident observa-
tions. Thus, a thorough and robust evaluation of model microphysics with observations across a wide range of 
convective regimes would be valuable.

Dolan et al. (2018; henceforth D18) applied Principal Component Analysis (PCA) to a worldwide disdrometer 
data set to examine rain drop size distribution (DSD) variability (Figure 1). This framework objectively identified 
the co-variability of six parameters related to rainfall. The findings revealed that the diverse set of observations 
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consistently had predictable modes of variability, which were objectively divided into six precipitation groups 
(PGs). Using co-located polarimetric radar analysis, these six PGs were hypothesized to be related to fundamen-
tal precipitation processes, such as convective and stratiform precipitation, and warm rain and ice-based precip-
itation mechanisms. However, more quantitative understanding of the microphysical processes contributing to 
these PGs can be gained by exploring the PGs with an observationally verified model that provides information 
on microphysical process rates, the conduits for transferring mass between hydrometeor categories.

The D18 objective analysis formulization provides a robust opportunity to intercompare models and observations. 
For model validation, rather than comparing a single parameter which may or may not be directly observed or 
predicted by the model, the multi-parameter space can assess if the model is able to capture the same variability 
evident in the observations. Importantly, by characterizing the co-variability of precipitation parameters, we can 
better understand processes, and statistically relate observations to models without having to use direct case study 
comparisons. For example, Saleeby et al. (2022b, henceforth S22) used a global set of disdrometer observations 
and a diverse set of model simulations from a variety of convective regimes using the Colorado State University 
Regional Atmospheric Modeling System (RAMS) and Weather Research and Forecasting (WRF) Model version 
3.9.1 (Skamarock, 2006) to investigate the raindrop breakup parameterization. By comparing the diverse data 
sets from observations and models in the 2D Nw-D0 parameter space described in D18, it was found that there 
was an abundance of drops occurring at a mean drop size of 1.1 mm, which is the diameter at which the raindrop 
self-collection efficiency curve becomes negative and breakup is most active.

Herein we build on the D18 framework using a diverse set of model simulations (S22) to evaluate the model-based 
rain multi-parameter variability and explore the statistical PGs within the context of the model, and finally apply 
the framework to a case study from the Mid-latitude Continental Clouds and Convection Experiment (MC3E) 
in order to evaluate both the model and disdrometer data (Figure 1).First, we outline the PCA and introduce the 
diverse disdrometer and model data sets used in the analysis. Next, we analyze the precipitation variability as 
determined by the observations and the model data sets, including exploring the impact of a fixed DSD shape 
parameter assumption in the model. We then leverage the framework to explore microphysical processes contrib-
uting to the PGs and conclude by applying the framework to a case study of a squall line from MC3E (Jensen 
et al., 2015).

Figure 1. Flowchart depicting the framework for statistically relating inputs of 15 Regional Atmospheric Modeling System 
(RAMS) simulations (this study) and disdrometer spectra (D18) to microphysical processes through precipitation groups 
(PGs). The analysis focused in D18 is indicated by dashed boxes, while that of the present study is represented by the solid 
boxes and arrows in the upper half of the flows. The Principal Component Analysis (PCA) derived principal components 
(PCs) are used to determine six PGs with common co-variability of the six rain parameters. The color of variable within each 
PG box illustrates how the values in each group compare to the global means, with pink denoting significantly higher values, 
blue lower than average, and black with values near the global mean.
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2. Methods
2.1. Disdrometer Observations

In this study we use disdrometers as the primary source of rainfall observations. A variety of disdrometers span-
ning a diverse set of environments supporting different types of convection have been deployed across the world 
as parts of long-term installations or for field campaigns. The disdrometer data set used in this analysis includes 
many of the same mid- and low-latitude data from D18 (Table 1; see D18 for more details), with additional data 
from three recent Department of Energy (DOE) deployments: the East North Atlantic (ENA) site in the Azores 
(D. Wang & Bartholomew, 2014; J. Wang et al., 2022); the Clouds, Aerosol, and Complex Terrain Interactions 
(CACTI, Varble et  al.,  2021; D. Wang & Bartholomew, 2018) in Cordoba, Argentina; and the Green Ocean 
Amazon (GoAmazon; Martin et al., 2017) in Manaus, Brazil. Several NASA data sets are also included from the 
HYdrological cycle in Mediterranean EXperiment (HYMEX; Drobinski et al., 2014; Ducrocq et al., 2014) in 
France and Italy, and six disdrometers deployed in Huntsville, Alabama (Petersen et al., 2010; Thurai et al., 2011). 
Finally, two shipborne experiments, Propagation of Intra-Seasonal Tropical Oscillations (PISTON, Chudler 
et al., 2022; Sobel et al., 2021) and Salinity Processes in the Upper-ocean Regional Study (SPURS-2, Lindstrom 
et al., 2019; Rutledge et al., 2019) provide valuable open-ocean disdrometer measurements  (Klepp et al., 2018). 
In total, these observations (OBS) encompass over 400,000 raining minutes. High latitude locations used in D18 
were purposefully omitted from this analysis.

We note here that we are using a heterogeneous disdrometer data set, with three distinct instruments, each with 
different detection capabilities. Several studies have analyzed and compared the different platforms and found 
that the fits and integrated parameters are similar (Thurai et al., 2011; Tokay et al., 2001), although the minimum 
size detected by the disdrometers can have a larger impact on the derived parameters than missing the larger drops 
which are infrequent in the disdrometer data sets (Tokay et al., 2013). The disdrometers have different reliable 
minimum drop diameters of 0.2 mm for the 2DVD and 0.3 mm for the JWD (Tokay et al., 2013), 0.36–0.43 mm 
for the ODM (Klepp, 2015; Protat et  al., 2019), and 0.2–0.25 mm for the Parsivels (Tokay et  al., 2014). All 
disdrometer data were quality controlled in a similar manner by applying a minimum threshold of 100 drops 
and a minimum rain rate (RR) of 0.05  mm  hr −1over a 1-min period (Thompson et  al.,  2015). Liquid water 
content (LWC) and RR are calculated from the distribution, and the data are fit to a gamma distribution (Thurai 
et al., 2014) to derive the gamma distribution parameters.

The OBS are broken into four geographic regions (Figure 2), representing different types of convection and environ-
ments leading to different precipitation processes. For example, oceanic convection tends to occur in environments 
comprised of low aerosol concentrations and very moist air which leads to deep warm-cloud depths and prolific 
warm-rain processes, while the continents are drier and more polluted in comparison, with robust mixed-phase 
and ice processes. D18 found variability in the PGs as a function of latitude, with the tropics (mid-latitudes) having 
the most warm-rain (ice) contributions. These four geographic regimes are continental mid-latitude, oceanic 
mid-latitude, tropical continent, and tropical ocean. Most deployments of ground instruments included herein are 
in the mid-latitude continents (primarily over the US), and the fewest are over the  mid-latitude oceans (Figure 2).

2.2. RAMS Simulations

RAMS is a non-hydrostatic, fully compressible research and weather prediction model run on an Arakawa-C 
grid with a σz terrain following-vertical coordinate system (Cotton et  al.,  2003). RAMS has demonstrated 
success in simulating a range of cloud systems, such as supercell thunderstorms (e.g., Freeman et  al.,  2019; 
Grant & van den Heever, 2014b; Grasso, 2000), tropical and midlatitude mesoscale convective systems (e.g., 
Marinescu et al., 2016; McGee & van den Heever, 2014; Olsson & Cotton, 1997), tropical maritime systems 
(e.g., Riley-Dellaripa et al., 2018; Toms et al., 2020), maritime congestus clouds (Leung & van den Heever, 2022; 
Sheffield et al., 2015), and shallow, warm rain clouds (e.g., Cheng et al., 2009; Jiang & Feingold, 2006; Saleeby 
et al., 2015). For more details on the RAMS model and microphysics packages, please see Meyers et al. (1997), 
Saleeby and Cotton  (2004), Saleeby and van den Heever  (2013), and Walko et al.  (1995). Each hydrometeor 
species is represented by a generalized gamma distribution with an a priori selected constant distribution shape 
parameter (μ).

For the PCA, it is vital to have a diverse set of precipitation processes represented in the model simulations. 
Additionally, for comparison with OBS, it is important to capture a similar range of convective environments 
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and types that are sampled by the disdrometers. To this end, 14 RAMS simulations that have been previously 
reported in the literature were selected for analysis (S22, their Table 1). The simulations broadly correspond to 
the four geospatial regimes represented within the disdrometer data set. The mid-latitude continental regime is 
represented by the 20 May squall line from MC3E (Marinescu et al., 2016), and an idealized supercell (Grant & 
van den Heever, 2014b). These simulations have deep and complicated ice processes, including strong convec-
tive motions and stratiform anvil development. Warm-rain only idealized simulations initialized using ATEX 
(Atlantic Trade Wind Experiment) conditions (Saleeby et al., 2015) result in shallow stratocumulus typical of 
the mid-latitude ocean. Select active and inactive phases of a 40-day long simulation of the boreal summer 
intra-seasonal oscillation (BSISO) in the Indo-Pacific include the range of convection from shallow warm rain to 
deep organized systems ubiquitous to the tropical ocean (Toms et al., 2020). Additionally, simulations initialized 
with a moist tropical Dunion and Velden (2004) sounding with different aerosol perturbations capture different 
aerosol effects in tropical deep convection (Saleeby et al., 2011). Lastly, tropical continental convection is repre-
sented by several idealized experiments using a radiative convective equilibrium to simulate linear and clustered 
convection (Grant et al., 2018), and polluted and clean sea breeze convection (Grant & van den Heever, 2014a). 
These sets of simulations mimic the relative distributions of observations in each of the four geographical regimes 
(Figure 2), and represent a diverse set of aerosol, ice, mixed-phase, moist convection, deep convection, and shal-
low warm rain processes.

2.3. Rain Parameters

A normalized gamma size distribution which accounts for varying LWC is often used to represent raindrop size 
distributions (DSD) at the surface (e.g., Bringi et al., 2003; Testud et al., 2001; Ulbrich, 1983; Willis, 1984). 
Normalized gamma DSDs are described by three parameters: the median drop diameter (D0), the intercept param-
eter of the normalized gamma (Nw), and a shape parameter μ. We note that in the modeling community, the shape 
parameter is often referred to as ν, where μ = 0 (ν = 1) represents the exponential distribution. These formulations 
are detailed in Williams et al. (2014), D18, and S22. These parameters are readily derived from disdrometer data, 
which measures the number of drops as a function of size. The two-moment bulk microphysics scheme used by 
the RAMS simulations (Section 2.2) predicts the number concentration (n) and mixing ratio (q) for each hydro-
meteor species while assuming a μ shape parameter a priori. All the simulations employed here assumed μ = 1 
for rain (except in Section 3.2). From these parameters, the mass-weighted mean diameter Dm (and therefore D0), 
Nw, width of the mass spectrum (σm), and total number of drops (Nt) are derived.

We note here the confusing and often inconsistent terminology used across the literature in the modeling domain 
and the observational domain. Therefore, it is critical to define the nomenclature to place the observations and 
model results in the same spectrum space. While both consider gamma particle size distributions, the number 
spectrum is often the space of choice for the modeling community, while the mass spectrum is typically used for 

Figure 2. Total frequency of points in each of the four regimes, with observations as solid bars and Regional Atmospheric 
Modeling System (RAMS) simulations as hatched bars. See Table 1and S22 for more information about the data sets.
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observations. The modeling community often discusses “Dm” as the diameter of the mean mass or the mean mass 
diameter or the volume-number mean diameter, which can be directly computed from the model parameters qr 
(hydrometer mass) and Nr (hydrometer number) without having to know the characteristics of the entire spectrum. 
This can also be calculated from the ratio of the third moment to the zeroth moment of the number distribution:

𝐷𝐷3,0 =
∫

Dmax

Dmin
𝑁𝑁(𝐷𝐷)𝐷𝐷3𝑑𝑑𝐷𝐷

∫
Dmax

Dmin
𝑁𝑁(𝐷𝐷)𝑑𝑑𝐷𝐷

 (1)

We will refer to this herein as the “volume-number mean diameter.” Observations from disdrometers and radar 
use the mass-spectrum, where the median volume diameter, D0, is the diameter that divides the total water content 
in half (Atlas et al., 1973) and the mass-weighted mean diameter is the ratio of the fourth to the third moment of 
the number distribution (Ulbrich, 1983; Williams et al., 2014):

𝐷𝐷𝑚𝑚4,3 =
∫

Dmax

Dmin
𝑁𝑁(𝐷𝐷)𝐷𝐷4𝑑𝑑𝐷𝐷

∫
Dmax

Dmin
𝑁𝑁(𝐷𝐷)𝐷𝐷3𝑑𝑑𝐷𝐷

 (2)

which is equivalent to that calculated from the first and zeroth moments of the mass distribution (Williams, 
et al., 2014):

𝐷𝐷𝑚𝑚1,0 =
∫

Dmax

Dmin
𝑚𝑚(𝐷𝐷)𝐷𝐷𝐷𝐷𝐷𝐷

∫
Dmax

Dmin
𝑚𝑚(𝐷𝐷)𝐷𝐷𝐷𝐷

 (3)

The median volume diameter is related to the mass-weighted mean diameter through D0(4,3) = (3.67 + μ)/(4 + μ)
Dm(4,3). For comparison, the frequency distribution of the OBS and RAMS in the 2-D log Nw-D parameter space 
calculated with Dm(3,0) and D0(4,3) are shown in Figure 3. In this space, the abscissa (Dm, D0) is a measure of the 
mean size of raindrops in a distribution in mm, while the ordinate (log Nw) is related to the LWC and inversely 
proportional to D 4. This representation essentially describes how the available water is distributed, where in the 
lower right, there are low concentrations of large drops, and the upper left is high concentrations of small drops. 
In mass space (Figure 3, top row), the contributions from the larger diameters are accented, while in number space 
(Figure 3, bottom row) the distribution is more compact. Results described in S22 are framed in terms of Dm(3,0), 
while those presented in D18 are in D0(4,3). For the remainder of this analysis, we will adopt the D0 = D0(4,3) and 
Dm = Dm(4,3) definitions related to the mass-weighted spectrum to align with the discussion and analysis in D18.

2.4. Principal Component Analysis

PCA is a statistical method for determining the co-variability of multiple parameters and is applied herein to 
understand the joint variability of rainfall parameters. While many studies evaluate model performance using 
single parameters (such as RR, accumulated rainfall, or reflectivity), PCA provides a deeper assessment of model 
microphysics and a model's ability to capture natural precipitation variability (represented herein by disdrome-
ter observations; D18) through the use of multiple parameters. Following the methodology of D18, we use six 
parameters to define the surface rainfall: log Nw, Dm, σm, RR, LWC, and Nt. These six parameters are normalized 
by their means to get a standard anomaly of each parameter. We use the log form to calculate the empirical 
orthogonal basis vectors (EOFs) of the latter three parameters to account for their large dynamic range. Each 
datapoint can be described by a linear combination of the resulting EOFs, the coefficients of which are called the 
principal components (PCs). The PCs are essentially a measure of how much a given point resembles an EOF. 
Each EOF has a positive and negative vector which are equal and opposite but arbitrary. For consistency, we will 
follow the D18 definition of the positive mode of EOF1 as all positive standard anomalies of the six parameters, 
and positive EOF2 as positive standard anomalies of log Nw and negative standard anomalies of Dm. These defi-
nitions are used to group the results as described below.

D18 showed that EOF1 was broadly an “intensity” mode—that is, all standard anomalies were either positive 
(larger than mean values) or all negative (smaller than mean values). This mode, explaining roughly 58% of 
the variability in the global DSD, equates to a broad DSD containing many drops that are larger than average 
and comprise heavy rain (positive EOF1); conversely, low concentrations of smaller than average drops and a 
narrow DSD are associated with lighter than average RRs. These two modes were shown to be consistent with 

 21698996, 2023, 18, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JD

038902, W
iley O

nline L
ibrary on [26/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Geophysical Research: Atmospheres

DOLAN ET AL.

10.1029/2023JD038902

7 of 20

convective (strong vertical motions) and stratiform (weak vertical motions) processes. The second mode of vari-
ability (EOF2) was found to be related to the size distribution, with the largest standard anomalies associated 
with log Nw, Dm, σm, and Nt, but smaller variability in the integrated parameters of RR and LWC. About 30% of 
the variability in the D18 global data set was found to be explained by EOF2. In this situation, there was either a 
large concentration of moderate drops with a narrow DSD or a broad DSD with low concentrations of larger than 
average drops. D18 argued that these differences were predominantly related to the warm versus ice-based rain 
processes. Higher EOFs accounted for 12% of the variability and were not further explored by D18.

D18 defined six PGs based on PC thresholds of the first two EOFs (Figure 1). While the imposed thresholds are 
somewhat arbitrary, higher thresholds pick out points at the extrema, resulting in groups which are more distinct 
from each other, but with fewer samples and more ambiguous points. For this analysis, we selected a threshold 
of PC1 and PC2 >  |0.9| for both OBS and simulations as this yielded the most similar distribution of the six 
groups. D18 studied associated radar profiles for cases of each of the six groups and labeled them by inferred 
microphysical characteristics: PG1 is associated with convection; PG2 with stratiform processes; PG3 is weak, 
shallow convection; PG4 is heavy stratiform likely formed through aggregation processes; PG5 is robust warm 
rain processes such as collision-coalescence; and PG6 is ice-based processes producing rain via melted hail and 
graupel (Figure 1). These PGs will be shown and analyzed further in Section 3.1.

2.5. Discussion of Model and Observation Samples

For this analysis, we note that it is not necessary to match individual points or even storm characteristics within 
OBS and simulations, but in order to understand the variability, we need sufficient samples from all of the 

Figure 3. Density plot of the (top) log Nw-Dm(3,0) space and (bottom) log Nw-D0(4,3) space for (left) OBS and (right) Regional 
Atmospheric Modeling System (RAMS).
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different types of precipitation processes and throughout the storm lifecycles in both data sets. While disdrom-
eters offer high temporal-resolution and often multi-year temporal sampling, a single disdrometer is limited to 
whatever precipitation passes over a single point and therefore may not capture the full lifecycle of a system or 
even sample the most intense precipitation core. This is compounded by the fact that convective cores are gener-
ally highly compact in area and short-lived compared to broad, long-lived stratiform areas, a point which is high-
lighted by the relative sampling of the PGs in D18 (much more stratiform compared to ice-based or convection). 
Conversely, many of the model simulations are either case events or shorter-term (∼1 day) simulations which 
fully encapsulate a storm lifecycle with thousands of surface points, but which may not fully capture environmen-
tal influences or the seasonality of a multi-year disdrometer installation (the exception is the BSISO simulations 
which encompass 40 days). To address these data difference issues, we appeal to a large statistical sample size. 
For the disdrometers, by selecting a large variety of locations, especially those with long-term data sets, presum-
ably every phase of a convective lifecycle will be sampled. Additionally, some of the projects such as MC3E and 
IFloodS deployed disdrometer arrays (five to six disdrometers over <100 km 2 domain) which enhance, at least to 
some degree, the spatial sampling within a given storm. We selected model simulations which cover similar types 
of precipitation (e.g., warm rain, ice-based, stratiform, convective, organized, isolated) to the OBS but with a 
variety of environments. Although these selections are somewhat qualitative, we tried to quantitatively match the 
relative sample size within each of the four geospatial convective regimes between OBS and RAMS (Figure 2). 
Often the simulations have millions of points per simulation, whereas the OBS may have much fewer. Therefore, 
to achieve a similar distribution to the OBS, we only sampled every second or third model point at the surface 
spatially (temporally). On a convective scale, this sampling is on the order of several kilometers (minutes), and 
therefore all types of precipitation and phases of lifecycle are still represented.

The temporal and spatial sampling of the DSDs from the disdrometer and the model must also be considered. 
The disdrometer DSDs are typically measured over 10s of cm 2, with an integration time period of 1-min (Rees 
& Garrett, 2020; Schönhuber et al., 2008), while the model DSDs are calculated over areas of 300–1,000 m 2 and 
represent an instantaneous DSD within the grid cell at each 2–5 min output interval. The types of disdrometers 
used in this study also have a minimum reliable detection limit of 0.2–0.5  mm, thereby under-sampling the 
smallest rain drops (Tokay et al., 2013). Large drops (>5 mm) are also likely under-sampled by disdrometers due 
to the small sampling cross-section and the relative infrequency of large drops (Gatlin et al., 2015). Finally, the 
two-moment bulk scheme used in these RAMS simulations keeps the rain drop shape parameter (μ) fixed, thereby 
reducing the degrees of freedom in the rain spectra. All of these factors must be considered when making the 
OBS to RAMS comparisons and drawing conclusions about the modeling and observational platforms and the 
processes being observed. However, these sampling issues also underpin the two-way street upon which we built 
this framework: the observations can help to evaluate and understand model results and parameterizations, and 
the simulations can contextualize the observations and processes producing them.

3. Results of the Multi-Parameter Framework
3.1. PCA Results Applied to RAMS Database

The resulting EOFs from RAMS and OBS show minor differences between the first two EOFs (Figure 4). Both 
show large positive anomalies of all six parameters in EOF1, while EOF2 has large positive anomalies in log Nw 
and log Nt and negative anomalies in Dm and σm. Interestingly, the anomalies of log RR and log LWC are positive 
in OBS and negative in RAMS, but in both cases the amplitude of the standard anomaly is much smaller than 
the other four variables. From this we conclude that RAMS captures the same variability as is evident in the 
OBS with respect to the six parameters of the rain DSD. This suggests that the underlying physics of rainfall and 
precipitation development are largely well-simulated by the RAMS microphysical parameterizations. Consider 
EOF1, broadly described as the intensity mode with positive standard anomalies in all parameters. Strong vertical 
motions (characteristic of convection) generate heavy rain from numerous relatively large drops. Conversely, small 
drop sizes, low number concentrations, and low liquid water contents will generate lower RRs seen in the negative 
EOF1. For EOF2, D18 found this mode to be consistent with variability in size—that is, either large concentra-
tions of moderately sized drops (as with the positive mode), consistent with warm rain processes, or low concen-
trations of large drops which form from melting ice and mixed phase processes, such as melting hail and graupel.

However, differences in the amount of variability explained by each of the EOFs is telling. In both RAMS and 
OBS, the first mode of variability, associated with rainfall intensity, explains over 50% of the variance (57.8% 
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and 51.5% for RAMS and OBS, respectively). However, EOF2 explains nearly the remainder of the variability 
(41.6%) in RAMS, with the higher order EOFs accounting for only 0.6% of the variability in this parameter space. 
On the other hand, OBS shows that EOF2 explains a much smaller portion of the variability (31%), with more 
variability (17.5%) in the higher order EOFs. While we do not consider the higher order EOFs, we hypothesize 
the differences could be related to the constraints imposed in the model parameterizations, or perhaps limited by 
the case study selections comprising the simulation database.

If we now examine the 2D space occupied by PC1 and PC2 for OBS and RAMS, we see notable differences 
(Figure 5). The most striking difference is the correlation between PC1 and PC2 in RAMS, also corresponding to 
the highest density of points (Figure 5b) extending into the red (PG1) and orange (PG5) regions. OBS has a much 
wider spread in values, and the highest density of points is centered closer to (0,0), although with slightly more 
negative PC1 values indicative of more frequent stratiform sampling, as expected from single point disdrometer 
measurements (Figure 5a). Both OBS and RAMS have notable discrete boundaries which are likely related to 
physical minimum values, such as RR = 0 and LWC = 0. The upper boundary at high PC2/low PC1 is likely 
related to the minimum detectable diameter in OBS, and similarly in RAMS is related to the minimum rain drop 
size used in the simulations. The boundary in RAMS negative PC1 sweeps out an arc and is also likely related to 
natural minimum values in the parameters. It is worth noting that the RAMS two-moment microphysics scheme, 
like many bulk microphysics schemes, fixes the DSD shape parameter, μ. This could artificially constrain the 
breadth of the prognostic parameters and the resulting DSD, and this feature may explain some of the noted 
correlations and boundaries. This will be explored briefly in Section 3.2.

Figure 4. The first (solid line) and second (dotted) empirical orthogonal basis vectors (EOFs) for Regional Atmospheric Modeling System (RAMS) (green) and OBS 
(red) from the Principal Component Analysis (PCA). The sign of the EOF is arbitrary but we assign the vectors shown as “positive.” The amount of variance explained 
by each EOF is given in the legend.

Figure 5. Frequency of occurrence of PC1 versus PC2 for (a) OBS and (b) Regional Atmospheric Modeling System 
(RAMS). Shaded boxes separated represent the principal component (PC) range of values associated with each precipitation 
group. Dashed red lines indicate the thresholds (0.9) used to isolate each precipitation group. The zero lines are indicated by 
dotted black lines.
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The representation of the PGs derived from the PCs in log Nw-D0 space is enlightening and provides insights into 
the strengths and limitations of both observations and the simulations (Figure 6). While the PGs are in the same 
relative locations in this space, they do not necessarily occupy the same absolute values of D0 and log Nw. This 
means that RAMS successfully captures distinct PGs that have the same relative differences in the precipitation 
parameters as OBS—shallow convection has more numerous small drops and lower RRs compared to ice-based 
precipitation—but that the actual values of the parameters within those groups differ. The “spike” discussed by 
S22 is a notable feature of the RAMS PG1 (Figure 6b), and it was found to result from the drop-breakup param-
eterization. While there is a small bump in OBS in a similar D0 to the RAMS PG1 spike, this region is identified 
with PG5. This bump in OBS is likely related to the equilibrium distribution (Zawadzki & Antonio, 1988) where 
there is a balance between collision-coalescence and drop breakup in heavily raining deep warm rain cores. The 
RAMS parameterization appears to be too aggressively forcing this equilibrium toward a preferred drop size and 
artificially constraining the DSD. The imposed minimum Nt threshold in the OBS data limits the extent of PG4 
and PG6 to low log Nw compared to RAMS. In RAMS, these are very low concentrations of large drops from 
melted hail or graupel that have not undergone breakup. However, PG6 has larger D0 values and higher log Nw 
than RAMS. PG2 sits primarily below log Nw = 3 in RAMS, but at higher log Nw in OBS. Additionally, RAMS 
has very few points extending to the area of combined high D0 (>2 mm) and high log Nw (>2). Finally, the RAMS 
PGs are spatially separated by a large region of ambiguous points, whereas there is significant overlap in OBS 
in this space. This highlights the role of the other four variables used in the PCA in defining the PGs, notably μ 
which provides more degrees of freedom than simply using log Nw and D0.

The tails of the RAMS D0 spectrum highlight the limitations in the observational data. Reliable measurements of 
drops smaller than 0.2 mm, as discussed in Section 2.1, are lacking with the types of measurements comprising 
OBS, and therefore the points at high log Nw and low D0 may be underrepresented by OBS. Similarly, at the 
large sizes and low (concentrations) log Nw the OBS data are limited to Nt > 100 drops in order to ensure enough 
data for the curve-fitting and prevent errant non-precipitation points from entering the data set (Thompson 
et al., 2015). Additionally, as discussed in Section 2.5, convective precipitation formed through melting graupel 
and hail, which we argue forms PG6, is limited in space and time and likely under sampled by disdrometers. In 
fact, the frequency distribution (Figure 3) demonstrates that these points have the lowest frequency of occurrence 
in both OBS and RAMS. Thus, differences in PG4 and PG6 at very low log Nw and large D0, could be due to 

Figure 6. Scatter plot of precipitation groups (colored) in log Nw-D0 space for (a) OBS and (b) Regional Atmospheric 
Modeling System (RAMS).
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compounding sampling problems related to the transient and infrequent nature of points with that distribution 
and the threshold of Nt = 100 drops in OBS. In these extreme ends of the DSD parameter space, RAMS is able 
to extend observations beyond the sampling limits to fill out the tails.

We conclude from the PCA analysis of the global data sets that the RAMS model is able to successfully repro-
duce the rain variability and the six PGs seen in OBS. We interpret this to mean that the underlying microphys-
ical parameterizations generating rainfall are generally capturing the main mechanisms seen in observations. 
However, notable differences between the OBS and RAMS in the log Nw-D0 space suggest that certain micro-
physical parameterizations may need modifications, such as the drop breakup (S22). The assumed fixed shape 
parameter that two-moment schemes, such as the RAMS scheme used herein, may also contribute to some of the 
noted differences by constraining the breadth of DSDs that are allowed. The sensitivity of the model solutions to 
changes in the shape parameter are investigated next.

3.2. Investigation of the Influence of Fixed μ Assumption

The assumption of a fixed μ value in many two-moment bulk microphysics schemes removes one degree of 
variability and could therefore influence the results of the PCA. To test this, we examine the impacts of a change 
in shape parameter on a deep convective supercell case (Grant & van den Heever, 2014b), in which a variety of 
precipitation formation modes, ranging from complex ice and mixed phase to warm rain, are simulated. For the 
sensitivity experiments, the same model setup was used but the value of the assumed rain shape parameter was 
permutated: μ = 0, 1, 2, 3, 9, where μ = 0 is the exponential, μ = 1 is the default value for RAMS, and μ = 9 is 
an extremely narrow size distribution. Previous studies such as Morrison et al. (2012) and Freeman et al. (2019) 
have shown that the shape parameter assumption has important feedbacks to the total precipitation, microphysics, 
dynamics, storm structure, and timing of the simulated storm. Here we investigate how the PCA PGs change 
with different μ values, noting that the results are also influenced by the above factors when μ is permutated. 
For each sensitivity test, the six variables used in the PCA are normalized with the full RAMS database, and the 
data are projected onto the EOFs resulting from the full RAMS database. These steps ensure that all the different 
modes of variability are captured in the PCA in order to be intercomparable and consistent with the observations. 
Additionally, to remove the impacts of fixing μ, we simulated the same supercell case with the Hebrew Univer-
sity Cloud Model (HUCM, Khain et al., 2004) Spectral Bin Microphysics (SBM) that is implemented in RAMS 
(Igel & van den Heever, 2017). For reference, observations from a similar convective regime represented by the 
Southern Great Plains (SGP) observations over north central Oklahoma are included (Table 1). Although these 
comparisons are not one-to-one as in a case study, the OBS serve as bounds against which we can compare the 
results of the μ-sensitivities.

Changing the default RAMS μ value for rain from a broad gamma distribution with μ = 1 (Figure 7b) to an 
exponential (μ = 0, Figure 7a) results in many more parts of the spectrum classified as PG6 (ice processes, low 
log Nw large D0), and virtually no PG5 (warm rain, high LWC and log Nw, moderate D0) points. The largest values 
of log Nw are associated with the spike (high log Nw at D0 ∼ 1.6 mm, S22), and a consequential number of points 
are in the very low log Nw large D0 region identified as PG4 and PG6. Increasing μ increases the regions of the 
parameter space identified as PG5 while decreasing the prominence of the spike. We hypothesize this is because 
as the raindrop size spectrum narrows, there are more drops of similar size which do not readily collide, thus, 
decreasing the influence of the drop breakup parameterization. Simultaneously, with larger μ, the region of low 
D0 and high log Nw increases while the maximum D0 decreases. The HUCM scheme, which allows the shape of 
the raindrop size distribution to vary, broadly resembles the narrowest distribution (μ = 9), with large values of 
log Nw at small D0 and a limited maximum D0, but with a relatively broad breadth of values with moderate log Nw 
and D0 which is similar to the observations both in the global and SGP data sets (Figures 7g and 7h). Interestingly, 
in this parameter space the μ = 3 results more closely resemble the observed distributions and PG absolute values 
than the default value of μ = 1 most-often used for rain in RAMS simulations. Also, the value of μ = 3 is much 
closer to the global mean of μ = 4.2 found in D18.

4. Inferred Microphysical Processes
To investigate the microphysical processes contributing to each of the derived PGs we will use the RAMS μ = 3 
supercell simulation (which most closely resembled the observations, Figure 7). It is important to recognize that 
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Figure 7. Precipitation groups in log Nw-D0 space for bulk simulations of a supercell with rain μ = 0, 1, 2, 3, 9 (a–e), and 
Hebrew University Cloud Model (HUCM) (f); and global disdrometer observations (g), and Southern Great Plains (SGP) 
disdrometer observations (h).
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a single case may not fully capture the PG variability within the database, but this analysis is a step toward under-
standing processes associated with different PGs.

We will focus on the processes involved with generating or removing rain mass within a precipitating column. 
While RAMS tracks the process rates for different species (such as freezing of rain and aggregates melting to rain, 
etc.), to simplify the analysis we will consider warm phase processes of cloud water collection (rain source) and 
evaporation (rain sink), as well as ice phase processes of melting from all frozen species (rain source) and trans-
fer of rain to all ice categories (rain sink). Condensation and evaporation are represented as a single combined 
term where positive (negative) values correspond to net condensation (evaporation), but in the column inte-
grated budgets the evaporation term dominates the condensation term due to high evaporation in the subcloud air 
and  small condensational growth of rain in saturated conditions. The process rates are initially cumulative mixing 
ratios for each model column in units of g kg −1 s −1, but are shown as a relative percentage of the total amount of 
rain mass (kg) generated in each PG.

Most notably, PG1 generates the largest amount of net rainfall (Figure 8, black bar), while PG2 the least, consist-
ent with convective and stratiform classifications, respectively. Within PG2, cloud droplet collection is the great-
est contributor to rain, but melting of ice is similar in magnitude. The greatest loss of rain in this PG is through 
its transfer to ice hydrometeors by freezing or other mechanisms. In PG1, more rain is produced by melting ice, 
likely because there is much more ice in the column in convection compared to stratiform, and it will eventually 
melt. Rain generation in PG4 and PG6 is dominated by ice melting, and loss of rain occurs primarily via freezing 
at supercooled temperatures. While these two groups have similar rain budgets, the total amount of rain coming 
from PG4 is less than PG6, potentially indicative of a convective versus stratiform mode as suggested by D18. 
PG3, classified as shallow or weak convection, has a larger contribution from melting compared to cloud water 
collection, but slightly more mass is removed from the warm phase process of evaporation compared to freezing. 
PG5, which D18 hypothesized was related to strong collision-coalescence, has similar contributions to rain gener-
ation from cloud water collection and melting. The loss of rain in this group is dominated by freezing instead of 
evaporation.

While this analysis provides some insights into the origins of the PGs, the complexity of the supercell mixed-phase 
microphysics obscure any dominant process for several of the groups. Here we remember that the PGs were 
derived from a large and diverse set of data encompassing many environments and modes of precipitation 

Figure 8. The relative contributions to the total rain budget (kg) for each precipitation group (PG) in a supercell case. 
Sources of rain are represented by unhatched bars and the sinks of rain represented using the hatched bars, and the total 
(source +_ sink) in black.
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variability. Therefore, a single case may not isolate these distinct modes, and the same analysis would be required 
across all simulations to definitively conclude the origins of the PGs.

5. MC3E Case Intercomparison Using PCA Framework
We have seen that through a statistical comparison of large and diverse simulations and observations, RAMS 
generally reproduces the variability evident in the observational data. To understand these results in a more 
detailed way, we now look at individual storm-scale comparisons to try to understand both the processes behind 
the model and the findings based on observations. Both the RAMS and OBS data sets include the MC3E field 
campaign which took place in Oklahoma in 2011 (Jensen et al., 2015). On May 20, 2011, a squall line propagated 
eastward across the MC3E domain, which contained several NASA disdrometers deployed. This squall line had a 
region of stratiform precipitation with intense linear convection (Figure 9); the squall line reached the disdrome-
ters and the DOE ARM C-SAPR polarimetric radar around 1000 UTC (Figures 9a and 9b). The case and RAMS 
simulation were documented in detail by Marinescu et al. (2016) and assumes the default μ = 1 for rain.

Application of the PCA to the RAMS surface data provides a spatial representation of the PGs which is not 
possible using the disdrometer observations (Figure 9c). The weaker leading stratiform is generally character-
ized by PG3 and PG2, which have small mean drop sizes and low RRs (Figure 9d). PG1 is found in the heaviest 
raining cores (Figures 9c and 9d), which is perhaps not unexpected because this group has the highest LWC, 
the largest RR, and large D0 and log Nw values. The relative locations of PG4 and PG6 are notable in Figure 9a. 
Points associated with the PG6 are on the upwind edges of the convective cores, suggesting that group could be 

Figure 9. May 20, 2011 Mid-latitude Continental Clouds and Convection Experiment (MC3E) squall line at around 0950 
UTC. (a) C-SAPR reflectivity at 1.2° elevation and (b) C-SAPR rain rates at 1.2° elevation, (c) Regional Atmospheric 
Modeling System (RAMS) Principal Component Analysis (PCA) groups, and (d) RAMS rain. The location of SN25 is given 
by the black circle, and VSN with a green “+” in panels (c) and (d).
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associated with fallout of large precipitation ice from the main updrafts as D18 speculated and supported by the 
large contribution from melting to the rain budget (Figure 8). Finally, PG4 is found around the rear edges of the 
storm system, primarily behind the convective line. Radar analysis by D18 showed that this group was associated 
with strong bright band signatures in stratiform regions indicating precipitation formation through melting of 
larger  snow, also supported by the large contribution to the rain budget from melting (Figure 8), but with signif-
icantly less rain mass than PG6.

The consistency between the inferred PGs and the simulated storm structure is an important step toward under-
standing the link between observations of precipitation and microphysical processes. The simulated PGs show 
there are coherent regions of rain with similar properties, and that these groups are aligned within areas of a storm 
which might be subject to different dominant microphysical processes acting to shape the surface DSD, highlight-
ing the value of using the model to investigate and support the underlying microphysical processes.

Finally, we can compare the results between a disdrometer (SN25) and a “virtual” disdrometer (VSN) located simi-
larly within the RAMS simulation (Figure 10). The exact location of the RAMS virtual disdrometer was selected 
to represent a RR rate time series similar to NASA's 2DVD “SN25.” Both OBS and RAMS RRs traces  show the 
convective line passage after 1000 UTC, with peak RRs around 80 mm hr −1. Early in the case around 0700 UTC, 
a smaller peak in RR reached 15 mm hr −1 (30 mm hr −1) at SN25 (VSN), and another peak around 0900 UTC to 
around 30 mm hr −1 (SN25 and VSN). However, significant differences arise when looking  at the DSD traces. 
SN25 shows D0 at around 1.5 mm, with deviations to much larger sizes (>2.5 mm) associated with the peaks in 
RR. On the other hand, VSN shows D0 remaining relatively constant at around 1.8 mm with small deviations to 

Figure 10. Time series of (a and b) rain rate, (c and d) median diameter, (e and f) log Nw, and (g and h) log Nw-D0 for the 
NASA SN25 2DVD (left column) and a disdrometer in a similar location in the Regional Atmospheric Modeling System 
(RAMS) domain, VSN (right column). Points in all panels are color-coded by the precipitation group, following the legends 
in (g) and (h).
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smaller sizes in the time preceding the passage of the squall line. Interestingly, there is no change in the RAMS D0 
associated with the peak RR. In terms of log Nw, SN25 shows a range of values from 3.5 to 4.5, with peak values 
at the passage of the squall line. VSN log Nw values are generally above 3.5 until after the squall line passage, 
dropping significantly after 1130 UTC. The VSN log Nw values fluctuate with the RR, and show the highest 
values (4.5) coincident with the largest RR. Since D0 does not change with RR and log Nw, this is a clear sign of 
the drop breakup constraint where drops are forced to breakup in high LWC due to high collision efficiencies, 
resulting in numerous drops around dc (S22).

In terms of the PGs, SN25 mostly shows PG4 and PG6 with PG1 during the passage of the convective line. A 
few PG2 points were identified in the hour preceding the squall line. VSN shows mainly PG1 before 1130 UTC, 
with PG5 prior to the squall line passage. The end of the period after 1130 UTC is classified as PG6, then PG4 
similar to SN25.

This case study has shown the power of this statistical framework in which model output is effectively and 
appropriately compared with observational data. Application of PCA to RAMS data allowed for visualization of 
the spatial variation of the PGs, which is not possible with point-measurements collected by disdrometers. The 
identifications were spatially cohesive and roughly consistent with the conceptual model of a leading stratiform 
squall line, with stratiform (PG2) and shallow (PG3) in the leading stratiform regions, convection (PG1) in the 
cores, and strong aggregation (PG4) and melting ice (PG6) trailing the main convective line. Although the RR 
traces were very similar between the observational disdrometer and one placed similarly in the simulation, there 
were large differences in the variability of the DSDs during the passage of the convective line. The disdrometer 
data showed that the heaviest RR had the largest drop sizes, while the virtual disdrometer was limited in size by 
the parameterizations which constrained drop growth. Both showed a significant decrease in log Nw behind the 
squall line and similar low RR.

6. Conclusions
We applied a statistically based technique to assess the primary modes of precipitation variability in a large 
disdrometer data set and an equally large suite of convective simulations. By comparing the PCA derived vari-
ability seen in the observations with that of the model results, we were able to better understand how the model 
represents precipitation, as well as leverage the model results to contextualize the observations toward a better 
understanding of precipitation processes.

Importantly, we found that the model was able to reproduce the first two modes of variability as determined by 
PCA, therefore capturing the natural co-variability of parameters related to rainfall intensity and raindrop size 
seen in the disdrometer data set. However, while the amount of variability explained by the first EOF was simi-
lar between OBS (∼52%) and RAMS (58%), RAMS found that almost all the remaining variability (42%) was 
explained by the second EOF. In contrast, the OBS showed that the second EOF accounted for 31% of the varia-
bility in the data set, leaving the remaining 18% of the variability in higher order EOFs. This suggests that higher 
order processes found in nature may not be represented by the model microphysics, selection of cases, or limited 
area simulations. Examination of the PC values of the first two EOFs revealed that the model simulations show 
a strong correlation between positive PC1 and PC2 values that is not in the observations, suggestive of necessary 
constraints linking parameters of the DSD in the model's bulk microphysics scheme. RAMS-OBS comparisons 
also highlighted limitations of the disdrometer data set, including the inability to detect small drops (<0.2 mm) 
and the sampling of low concentrations of drops, as well as the challenge of observing deep convective cores 
which are limited in spatial and temporal extent.

We also explored the constraints imposed by assuming a single shape parameter on the PCA results. A series 
of sensitivity studies permutating the value of μ in a supercell, as well as with a bin microphysics model where 
μ freely evolves, were compared. Increasing the value of μ broadened the log Nw-D0 spectrum and reduced the 
drop-breakup spike as drops became similar in size, decreasing their collision efficiency. The μ = 3 simula-
tion had the closest resemblance to the observed distributions, suggesting that selection of the fixed μ value in 
two-moment schemes should be carefully considered.

Microphysical process rates available in the simulations were used to investigate the contributions of processes to 
the rain budgets of different PGs. PG1, hypothesized to be general convection, contributed the most to the rain-
fall budget with dominant contributions from ice processes of riming and freezing, while PG4 and PG6, which 
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are thought to be dominated by ice-processes, had the largest contributions from melting. PG2, considered to be 
stratiform in nature, had the most rain generated from cloud water collection, and PG3, associated with weak and 
shallow convection, had a larger component of rain removed due to evaporation compared to riming. Rain gener-
ated in PG5, hypothesized to be dominated by warm-rain processes, still had large contributions to the rain budget 
from ice-processes, highlighting the complex nature of precipitation formation in a supercell case.

Finally, the framework was applied to OBS and RAMS data from a squall line case study from MC3E. Applica-
tion of PCA to RAMS surface rainfall parameters revealed coherent spatial groupings within the storm structure. 
The leading stratiform area was generally classified as weak/shallow and stratiform, while the convective line 
was identified as the D18 convective category. Finally, behind the convective line were the ice-based and strong 
aggregation PGs, suggestive of the fallout of larger melted precipitation ice like hail and graupel, or size sorting. 
These structures are consistent with expected storm dynamics and microphysical processes, and they demonstrate 
how the model provides context for the disdrometer point-measurements and underpin the dominant microphys-
ical processes that were hypothesized in D18. Comparison of a synthetic disdrometer trace placed in RAMS to a 
comparable OBS disdrometer revealed how similar RRs could result from different rain DSDs, especially in the 
heaviest raining cores due to constraints imposed by the drop breakup parametrization.

We have demonstrated a new methodology to statistically compare a large disdrometer data set and a set of 
wide-ranging cloud simulations toward the mutual benefit of understanding precipitation processes in both 
models and observations. This analysis reveals both strengths and limitations in the rainfall parameterizations 
and the observational data. Such a statistical approach to model and observational comparisons provides a more 
sophisticated and meaningful means for model validation, while leveraging the strengths of CRMs to contextu-
alize observations and better understand processes which cannot be directly observed. Such a framework could 
be applied to other types of weather and climate models with different microphysics schemes, toward the same 
analysis given a diverse set of simulations representing a variety of cloud types.

Data Availability Statement
The disdrometer data used in this study are available from NASA (Farrar, 2023; Petersen et al., 2011; Petersen & 
Gatlin, 2013, 2014; Petersen et al., 2010, 2016, 2019; NASA, 2023) and ARM DOE (D. Wang & Bartholomew, 
2011a, 2011b, 2011c, 2011d, 2018). CSAPR data shown in Figure 9 is available from Lindenmaier et al. (2011) 
and plotted using the DOE-PyART software (Helmus & Collis, 2016). The archive of the available files and 
tools related to the analyses, as well as model Namelists and code necessary to reproduce numerical simulations, 
is available in Saleeby et al. (2022a). The Python and Jupyter notebooks to create the figures are available on 
GitHub (Dolan, 2023).
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