A STUDY OF WINTER THUNDERSTORMS IN THE HOKURIKU COASTAL AREA, JAPAN

Japan Defense Agency

ABSTRACT: For about a century, studies concerning summer thunderstorms in the middle latitude zone have elucidated data on both their meteorological and electrical features. By contrast, winter thunderstorms have been studied only for the last few decades. For both reasons of scientific interest and the practical purpose of preventing serious damage by winter thunderbolts to aircrafts and electric power systems, studies of winter thunderstorms have currently become one of the focuses of lightning research. The authors carried out thunderstorm observations in winter in the vicinity of Komatsu airport, which is situated on the Hokuriku coastline, for about 20 years. They used radar with CAPPI (Constant Altitude Plan Position Indicator) performance for thundercloud observations, a VHF sferics direction-finder system for lightning detection, and a network of field mills installed on 27 sites mutually separated by about 10 km for the investigation of thundercloud electrical structure. The present work elucidates the meteorological and electrical nature of winter thunderstorms and clarifies how the aerological conditions determine the grade of the lightning activity. Also, the authors introduce a new direction-finding system (SAFIR), which was installed in the vicinity of Komatsu airport on 1st March 2003. We can present latest results which were obtained with this new SAFIR system.

INTRODUCTION

Figure 1 shows the map of the Hokuriku district including Komatsu Airport and Wajima aerological weather station of Japan Meteorological Agency, including the sferics direction finder antenna sites at Komatsu, Shishiku and Kariyasu.

Figure 2 shows the detailed map of our observational field in the surrounding Komatsu Airport. This figure shows the 5.7 cm wave-length weather radar (No. 1), three antennas of the sferics direction-finder system (No. 1, 12, 23), and 27 field mills (No. 1-27).

![Figure 1. Map of Hokuriku district](image1.png)

![Figure 2. Detailed map of observational area](image2.png)
Figure 3. The relationship of lightning activity with the -10C altitude level

CASE STUDY AND STATISTICS OF LIGHTNING STRIKES TO THE AIRCRAFT

These are suitable highly in midwinter thunderstorms along the coast of the Sea of Japan. In fact, in midwinter almost all lightning activities that occur are weak ones known as "Single-Flash Thunderstorms" ("Ippatsu-Rai" in Japanese).

On 6th January 1997, an aircraft took off Komatsu Airport and was struck by lightning that was obviously triggered by its invasion into the graupel area of the active convective clouds.

Figure 4. Video image of the lightning strike to the aircraft on 6th January 1997
Figure 4 shows the video image of the lightning strike to the aircraft over Komatsu Airport at 11:57:59 JST on 6th January 1997. According to our sferics direction finding system and optical observations around Komatsu Airport, there were no lightning flashes on the day. We can assert that the lightning strike to the aircraft was obviously triggered lightning by the aircraft’s invasion into the graupel area.

Figure 5 shows the variation of electric field at Komatsu Airport. It indicates that the positive peak value occurred right before the lightning strike to the aircraft, and this means that falling positive charged graupel particles were located over Komatsu Airport. From the result, this triggered lightning strike to the aircraft was a negative Cloud-to-Ground flash initiated by a upward positive leader to the negative charged region and a downward negative leader to the ground after falling out of the “Positive charged graupel” particles.

Figure 6 shows the seasonal variation of lightning strikes to aircraft around Komatsu Airport for the 20-year period from 1981 to 2000. The peak value occurred in January and most lightning strikes to the aircraft occurred in winter, and especially in December, January and February.
NEW DIRECTION FINDING SYSTEM (SAFIR)

Table 1 presents a comparison between the new direction-finding system (SAFIR) and the old one. We can obtain intra- or cloud-to-cloud lightning discharges and cloud-to-ground discharges distinguished from each other.

We intend to use this new SAFIR system to observe lightning discharges in thunderstorms and lightning strikes to aircraft. Several observational results will be presented in the ICAE conference in Versailles, France.

Table 1. Comparison between the new system (SAFIR) and the old one

<table>
<thead>
<tr>
<th></th>
<th>New direction-finding system (SAFIR)</th>
<th>Old system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reception frequency</td>
<td>VHF (110-118MHz)</td>
<td>VHF (100.5MHz)</td>
</tr>
<tr>
<td>Antenna</td>
<td>Dipole antenna</td>
<td>Yagi antenna</td>
</tr>
<tr>
<td>Time control</td>
<td>GPS</td>
<td>Internal crystal watch</td>
</tr>
<tr>
<td>Effective range</td>
<td>200km</td>
<td>100km</td>
</tr>
<tr>
<td>Resolution</td>
<td>3km rms</td>
<td>7km rms</td>
</tr>
<tr>
<td>Discrimination</td>
<td>Intra, C-C and C-G</td>
<td>None</td>
</tr>
</tbody>
</table>

CONCLUSION

To prevent aircraft-triggered lightning, we need more observation results and have to further clarify the electrical structure of winter thunderclouds.

ACKNOWLEDGEMENT

The authors thank Dr. F. Kobayashi, National Defense Academy and Mr. K. Masuda, Japan Air Self Defense Force for video camera data.

REFERENCES

