1. INTRODUCTION

Two-dimensional radar-based regional data products from NAME 2004, detailed in Part I of this study (Lang et al. 2005) - as well as case studies using 3-D volumes from the NCAR S-Pol radar - are being used to understand the climatology of convection in the heart of the North American monsoon in northwestern Mexico and the Gulf of California. In particular, the relative importance of large-scale forcing and the diurnal cycle in organizing and modulating convection is being studied.

Ahijevych et al. (2005) note the typical diurnal behavior of convection along the sea breeze front over the coast, as well as over the complex terrain of the Sierra Madre Occidental (SMO), which peaks in the late afternoon as expected ("undisturbed" regime). In addition, they note very active days ("disturbed" regime) wherein the typical diurnal convection evolves into more organized systems and propagates from the SMO, to the coastal plain where it merges with any existing sea breeze convection, and finally out to sea over the Gulf of California.

In this work, we present preliminary results linking the evolution and structure of precipitation systems to the effects of large-scale forcing and the diurnal cycle. In addition, we will show examples from in-progress case studies of the 3-D microphysical evolution of NAME storms, as well as intercomparisons between S-Pol and a nearby multi-frequency profiler network.

2. DIURNAL CYCLE ANALYSIS

Precipitation features were identified within the Version 1 NAME regional radar composites (0.02° grid spacing) by identifying regions with contiguous pixels (including adjacent corner pixels) of radar reflectivity ≥ 15 dBZ. Nesbitt et al. (2000) used a similar approach identifying precipitation features within the TRMM precipitation radar swath. For this study, features were identified within each time the radar composites were available, and their time of occurrence, location, area, rainfall volume, and number of points greater than 40 dBZ were calculated and stored.

In addition, an ellipse-fitting technique (Nesbitt et al. 2005) is employed on each feature whereby the major and minor axis lengths are calculated from the Eigenvalues of the mass distribution tensor of the raining points within each feature. Twice the major axis of the calculated ellipse is recorded as the feature’s maximum dimension (FMD). During the NAME EOP, 199609 features were identified within the composites. Future work will encompass tracking the features in time and space such that storms may be examined in the context of their individual life cycles.

Figure 1 shows diurnal cycle results from the precipitation feature analysis. A proxy for convective fraction (ratio of 40 dBZ to 10 dBZ; Fig. 1a) suggests that convective fraction is highest in the late afternoon (~1700 LT), in accordance with diurnal heating over the SMO. The amplitude on this peak is very large compared to the rest of the cycle. The mean feature maximum dimension (Fig. 1b) shows somewhat different behavior, with the maximum coming later, at 1900 LT, and a small plateau in the early to mid-morning hours.

The importance of large features or mesoscale convective systems (MCSs;
defined as features > 100 km in maximum
dimension) can be seen in the latter half of
Fig. 1. The fraction of rainfall from MCSs
(Fig. 1c) shows a peak even later in time,
near 2300 LT. In addition, there is a
secondary maximum in the early to mid-
morning hours. This corresponds to coastal
MCSs often observed to form along the land
breeze during this time period. Total rain
volume from MCS and non-MCS features
(Fig. 1d) further demonstrates the relative
importance of MCSs to rainfall in this region.
In addition, note the non-MCS peak that
precedes the MCS peak.

Overall, the diurnal cycle results
suggest that MCSs are the dominant mode
of convection in this region, with respect to
rainfall production. The systems grow
upscale from smaller convection that
develops in the afternoon over the SMO,
and forms MCSs during the evening hours.
In addition, there is a secondary MCS peak
in the morning hours, where systems
develop along the land breeze near the coast.

3. IMPACT OF LARGE-SCALE FORCING

Figure 2 (dates/times UTC, not LT
like Fig. 1) shows time series of the ratio of
40 dBZ to 10 dBZ echo (upper left), mean
feature maximum dimension (upper right),
fraction of rain from MCS features (length >
100 km), and 700 mb u and v winds from the
Mazatlan sounding during the NAME
extended observing period (EOP). A one-
day running mean filter has been applied to
the radar data to smooth the time series.
The red shading indicates the approximate
time periods that Ahijevych et al. (2005)
designated as "disturbed".

There is good rough correspondence between the behavior of
precipitation features and the occurrence of disturbed periods. During disturbed periods
there tend to be greater convective fraction (based on the 40 dBZ ratio proxy), larger features, and more rain from MCSs.

The presence of fluctuating meridional winds on a 3-5 day time scale in the sounding data suggests the passing of easterly waves, although the first set of strong southerlies early in the EOP (Julian Days 195-196) are due to a Gulf surge caused by Tropical Storm Blas (Higgins et al. 2005). There was a second Gulf surge during days 202-203, which also shows up as weaker southerly flow.

The following discussion points out the generalized behavior of convection relative to the 700 mb winds (i.e., easterly waves). It is important to note beforehand, however, that there are exceptions to this generalized behavior, and that the impact of large-scale forcing is likely more complex. But, to first order, larger features and MCSs tend to occur during the more northerly phase of the easterly waves, or just on the tail end of this phase. Higher convective fraction leads this behavior, but on a sub-day time scale consistent with the diurnal cycle behavior seen in Fig. 1.

This relationship to easterly wave phase (larger and more organized convection during the northerly phase) is qualitatively similar to that seen in the EPIC project (Petersen et al. 2003). However, the overall convective behavior is complex and may also depend on other factors, such as Gulf surges, easterly wave passage relative to the diurnal cycle, topographic flows, the influence of mid-latitude air masses, and other large-scale events.

Note that during the first Gulf surge (days 195-196), convective behavior is more in sync with the southerly flow, consistent with the influx of moisture associated with these surges. The second Gulf surge shows a weaker relationship with the convection,
with the latter peaking after the strongest southerlies have occurred. In addition, the Mazatlan winds are not a full proxy for easterly waves and other large-scale weather events. Further large-scale analysis will require use of the full multi-site sounding dataset available for NAME (Higgins et al. 2005).

4. MICROPHYSICAL CASE STUDIES

Work is ongoing for multiple case studies of the microphysical evolution of individual storms, utilizing 3-D data from the S-Pol polarimetric radar. Figure 3 shows sample RHIs from three of these cases. Shown are reflectivity and hydrometeor classification, which was based on the methodology of Tessendorf et al. (2005). The first case, 17 July 2004 (Fig. 3a), is from a disturbed period. It was an intense multicellular storm over the SMO, with graupel reaching up to nearly 15 km in height (AGL).

The second case, 21 July (Fig. 3b), was an MCS that occurred over the SMO during an undisturbed period. Here we see graupel over 15 km AGL. (Actually, since S-Pol was deployed on the coastal plain near the Gulf, AGL and MSL are roughly equal.) It is important to note, as this figure shows, that disturbed periods did not necessarily contain all the intense convection or MCSs. The disturbed criteria mainly involve long-lived widespread convection or MCSs moving out to sea (Ahijevych et al. 2005). Thus, the criteria are more propagation- and lifetime-oriented, not necessarily dependent on the convective intensity.

The third case, 5 August (Fig. 3c), was an intense MCS that developed over the SMO during a disturbed period. This storm was more intense than the previous
two, as large hail formed aloft, and the storm showed a bounded weak echo region (BWER) with a high-reflectivity (> 60 dBZ) overhang, though the hail melted before reaching the ground.

Overall, there were not a lot of well-organized convective systems during NAME 2004. Though MCSs often occurred, they tended to have a very messy structure, with few examples of the classic leading-line/trailing-stratiform MCSs seen elsewhere. However, as these case studies demonstrate, convective intensity was quite high in this region.

We are currently studying the full evolution of these different cases, as well as the mechanisms responsible for the common occurrence of intense yet poorly organized convective systems. We also are examining the importance of large-scale forcing for microphysical structure and evolution, as well as the relative differences between systems that develop over land and those that developed in a more oceanic environment.

5. S-POL/PROFILE INTERCOMPARISON

We also are currently doing intercomparisons between the S-Pol radar and the profiler network at the NOAA supersite, which was placed on the coastal plain about 45 km NW of S-Pol. Figure 4 shows a sample case study, 3 August, which was an MCS that occurred during a disturbed period. The S-band profiler data (Fig. 4a) demonstrate the excellent vertical resolution provided by the instrument, showing the small-scale turbulent updrafts and downdrafts. Meanwhile, the S-Pol data (Fig. 4b-c) can be used to provide larger-scale horizontal and vertical context to the profiler data.

Some of the ongoing profiler/S-Pol intercomparison work is modeled after May
and Keenan (2005), comparing S-Pol drop size distribution and hydrometeor classification retrievals to those provided by the profiler network. In addition, we will use the profiler network to retrieve updraft information, providing valuable kinematic data for comparison with the observed microphysical evolution of these storms.

6. DISCUSSION AND CONCLUSIONS

This paper shows some of the ongoing NAME radar work occurring at Colorado State University. Though our work is at early stages, the dataset shows great promise in providing better understanding of precipitation in this region, including the effects of the diurnal cycle and large-scale forcing; kinematic, microphysical, and mesoscale structure and evolution of individual systems; and other importance science questions pertinent to the North American monsoon.

7. ACKNOWLEDGMENTS

We thank Jon Lutz and Bob Rilling of NCAR, Arturo Valdez-Manzanillo of the University of Tabasco, and Armando Rodriguez of SMN, as well as other NCAR S-Pol and SMN radar staff, for their help with data collection and quality control. This work was funded by NSF grant ATM-0340544 and NOAA grant NA17RJ1228.

8. REFERENCES

